Año 2021 / Volumen 28 / Número 1

Revisión

Ozono y COVID-19: bases fisiológicas y sus posibilidades terapéuticas según el estadio evolutivo de la infección por SARS-CoV-2
Ozone and COVID-19: physiological bases and their therapeutic possibilities according to the evolutionary stage in SARS-CoV-2 infection

Rev. Soc. Esp. Dolor. 2021; 28(1): 27-36 / DOI: 10.20986/resed.2021.3810/2020

Marcos Edgar Fernández, María Jesús Albaladejo, Sandra Alava, Daiana Peña, Olga Susana Pérez


RESUMEN

No existe a la fecha un tratamiento definitivo para la nueva pandemia SARS-CoV-2. Están reconocidos tres estadios evolutivos en la infección por SARS-CoV-2 (infección temprana, fase pulmonar e hiperinflamación sistémica), con signos y síntomas clínicos característicos. Hay en marcha 80 ensayos experimentales internacionales que buscan un tratamiento efectivo para la pandemia COVID-19. De ellos, solo hay tres que consideran como alternativa de tratamiento la ozonoterapia (autohemoterapia mayor). No existe ningún estudio que evalúe la insuflación rectal de ozono, a pesar de ser una técnica segura, barata, sin riesgos y que es una vía de administración sistémica (oxígeno-ozono 95 %-5 %) y que justifica la realización de ensayos clínicos para validar las propiedades teóricas del ozono en el manejo del SARS-CoV-2, dados los excelentes resultados observados en el manejo del ébola.
El ozono tiene demostradas cuatro propiedades biológicas que podrían ser de potencial utilidad teórica como terapia complementaria en las diferentes fases de la infección por SARS-CoV-2. El ozono podría inactivar el virus por oxidación indirecta (ROS y LOP) y podría estimular el sistema inmune celular y humoral, siendo útil en la fase de infección temprana (estadios 1 y 2a). El ozono puede mejorar el intercambio gaseoso, reducir la inflamación y modular el sistema antioxidante, por lo que sería útil en la fase de hiperinflamación o “tormenta de citocinas”, y en la fase de hipoxemia y/o fallo multiorgánico (estadios 2b y estadio 3).
Dada la actual pandemia, urge llevar a cabo un estudio experimental que confirme o descarte las propiedades biológicas del ozono y le permita así ser una terapia complementaria o compasiva para el manejo efectivo de la infección por SARS-CoV-2.



ABSTRACT

To date, there is no definitive treatment for the new SARS-CoV-2 pandemic. Three evolutionary stages are recognized in SARS-CoV-2 infection (early infection, pulmonary phase and systemic hyperinflammation), with characteristic clinical signs and symptoms. There are 80 international experimental trials underway seeking an effective treatment for the COVID-19 pandemic. Of them, there are only 3 that consider to Ozone Therapy as an alternative (major auto hemotherapy). There is no study that evaluates Rectal Ozone Insufflation, despite being a safe, cheap, risk-free technique and that it is a systemic administration route (Oxygen-Ozone 95 %-5 %) and that justifies conducting clinical trials to validate the theoretical properties of Ozone in the management of SARS-CoV-2, given the excellent results observed in the management of ebola.
Ozone has 4 proven biological properties that could be of potential theoretical utility as a complementary therapy in the different phases of SARS-CoV-2 infection. Ozone could inactivate the virus by indirect oxidation (ROS and LOP) and could stimulate the cellular and humoral immune system, being useful in the early infection phase (stages 1 and 2a). Ozone can improve gas exchange, reduce inflammation, and modulate the antioxidant system, so it would be useful in the hyperinflammation or cytokine storm phase, and in the hypoxemia and / or multi-organ failure phase (stages 2b and stage 3).
Given the current pandemic, it is urgent to carry out an experimental study to confirm or rule out the biological properties of Ozone and thus allow it to be a complementary or compassionate therapy for the effective management of SARS-CoV-2 infection.





Artículo Completo

Nuevo comentario

Código de seguridad:
CAPTCHA code image
Speak the codeChange the code
 

Comentarios

No hay comentarios para este artículo.

Bibliografía

1. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018 Feb;23(2):130-7. DOI: 10.1111/resp.13196.
2. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses: a statement of the Coronavirus Study Group. bioRxiv. 2020; published online Feb 11. DOI: 10(2020.02), 07-937862.
3. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.
4. WHO. Coronavirus disease (COVID-2019) situation reports. 2020. [Consultado 27 diciembre 2020].
5. Hung LS. The SARS epidemic in Hong Kong: what lessons have we learned? J R Soc Med. 2003;96(8):374-8. DOI: 10.1258/jrsm.96.8.374.
6. Chen N, Zhou M, Xuan Dong X, Jieming Qu J, Fengyun Gong F, Yang Han et at. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-13. DOI: 10.1016/ S0140- 6736(20)30211-7.
7. Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J. Updated approaches against SARS-CoV-2. Antimicrob Agents Chemother. 2020;64(6):e00483-20. DOI: 10.1128/AAC.00483-20.
8. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-5. DOI: 10.1016/S0140-6736(20)30317-2.
9. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu,M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71.
10. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci. 2020;35(6):e79. DOI: 10.3346/jkms.2020.35.e79.
11. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. DOI: 10.1186/1743-422X-2-69.
12. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55(5):105938. DOI: 10.1016/j.ijantimicag.2020.105938.
13. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. DOI: 10.1016/j.ijantimicag.2020.105949.
14. Carrillo B, Martínez E. COVID-19 y acupuntura: ¿existe una nueva línea de investigación terapéutica? Rev Dig Acup. 2020;3(1):1-21.
15. Fernández-Cuadros ME, Pérez-Moro OS, Albaladejo-Florín MJ. Ozone fundamentals and effectiveness in knee pain: Chondromalacia and knee osteoarthritis. Germany: Lambert Academic Publishing; 2016.
16. Fernández-Cuadros ME, Pérez-Moro OS, Albaladejo-Florín MJ, Álava-Rabasa S. El ozono intraarticular modula la inflamación, mejora el dolor, la rigidez, la función y tiene un efecto anabólico sobre la artrosis de rodilla: estudio cuasi-experimental prospectivo tipo antes-después, 115 pacientes. Rev Soc Esp Dolor. 2020;27(2):78-88. DOI: 10.20986/resed.2020.3775/2019.
17. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451-4. DOI: 10.1038/s41418-020-0530-3.
18. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. DOI: 10.1093/cid/ciaa248.
19. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI: 10.1016/S0140-6736(20)30183-5.
20. Karakike E, Giamarellos-Bourboulis EJ. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front Immunol. 2019;10:55. DOI: 10.3389/fimmu.2019.00055.
21. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8. DOI: 10.1007/s00134-020-05991-x.
22. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
23. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. DOI: 10.1186/s40425-018-0343-9.
24. Mehta P, McAuley DF, Brown M, Sánchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration. UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI: 10.1016/S0140-6736(20)30628-0.
25. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: a clinical- therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5):405-7. DOI: 10.1016/j.healun.2020.03.012.
26. Bocci V. Ozone: a new medical drug. 2ª ed. Dordrecht, the Nederlands, Germany: Springer Verlag; 2011.
27. Iliakis E, Valadakis V, Vynios D H, Tsiganos C. P, Agapitos E. Rationalization of the activity of medical ozone on intervertebral disc. A histological and biochemical study. Riv Neuroradiol. 2001;14(1 suppl):23-30.
28. Paoloni M, Di Sante L, Cacchio A, Apuzzo D, Marotta S, et al. Intramuscular oxygen-ozone therapy in the treatment of acute back pain with lumbar disc herniation: a multicenter, randomized, double-blind, clinical trial of active and simulated lumbar paravertebral injection. Spine. 2009;4(13):1337-44.
29. Seyman D, Ozen NS, Inan D, Ongut G, Ogunc D. Pseudomonas aeruginosa septic arthritis of knee after intra-articular ozone injection. New Microbiol. 2012;35(3):345-8.
30. Mawsouf N, El-Sawalhi MM, Shaheen AA, Darwish HA, Martínez-Sánchez, et al. Effect of ozone therapy on redox status in experimentally induced arthritis. Rev Esp Ozono. 2011;1(1):32-43.
31. Madrigal C. Tratado de ozonoterapia. Madrid: Editorial La Salud Naturalmente; 2007.
32. Bocci VA. Scientific and medical aspects of ozone therapy. State of the art. Arch Med Res. 2006 May;37(4):425-35. DOI: 10.1016/j.arcmed.2005.08.006.
33. Babior BM, Takeuchi C, Ruedi J, Gutiérrez A, Wentworth P. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3031-4. DOI: 10.1073/pnas.0530251100.
34. Rowen RJ, Robins H. A plausible “penny” costing effective treatment for corona virus ozone therapy. J Infect Dis Epidemiol. 2020;6:113. DOI: 10.23937/2474-3658/1510113.
35. Eren E, Saribek F, Dalayci MZ, Yilmaz N. How to cripple SARS-COV-2 virus with Ozone treatment Thiol groups in viruses and SARS-COV-2. Disponible en: https://www.researchgate.net/publication/340253197_How_to_cripple_SARS-COV-2_virus_with_Ozone_treatment_Thiol_groups_in_viruses_and_SARS-COV-2 [último acceso 23 Feb 2021] DOI: 10.13140/RG.2.2.30726.40004.
36. Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J. 2019;16:69.
37. Madu IG, Belouzard S, Whittaker GR. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion. Virology. 2009;393:265-71.
38. Sharma VK, Graham NJ. Oxidation of amino acids, peptides and proteins by ozone: a review. Ozone Sci Eng. 2010;32(2):81-90.
Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol. 2002;3:1129-34.
40. Martínez-Sánchez G. Mechanisms of action of O3. Genomic pathways. Ozone Therapy Global Journal. 2019;9(1):21-22.
41. Delgado-Roche L, Riera-Romo M, Mesta F, Hernández-Matos Y, Barrios JM, Martínez-Sánchez G. Medical Ozone Promotes Nrf2 Phosphorylation Reducing Oxidative Stress And Proinflammatory Cytokines In Multiple Sclerosis Patients. Rev Esp Ozono. 2018;8(2 Supp 1):48-9.
42. Martínez-Sánchez G, Delgado-Roche L. Up-date on the mechanisms of action of ozone through the modification of cellular signaling pathways. Role of Nrf2 and NFkb. Rev Esp Ozono. 2017;7(2):17-8.
43. Bocci V, Valacchi G. Nrf2 activation as target to implement therapeutic treatments. Front Chem. 2015;3:4.
44. Re L, Martínez-Sánchez G, Bordicchia M, Giuseppe Malcangi G, Pocognoli A, Morales-Segura MÁ, et al. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur J Pharmacol. 2014;742:158-62. DOI: 10.1016/j.ejphar.2014.08.029.
45. Fernández-Cuadros ME, Pérez-Moro OS, Mirón-Canelo JA. Could ozone be used as a feasible future treatment in osteoarthritis of the knee. Divers Equal Health Care. 2016;13(3):232-9.
46. Fernández-Cuadros ME, Pérez-Moro OS, Albaladejo-Florín MJ, Álava-Rabasa S, Tobar-Izquierdo M, Rodríguez-de-Cía J. A new paradigm for the management of knee osteoarthritis: the role of hyaluronic acid, platelet-rich plasma (PRP) and ozone in the modulation of inflammation. Science Repository. 2020; In press. DOI: 10.31487/j.JSR.2020.01.01.
47. Martínez-Sánchez G, Schwartz, A, Donna VD. Potential cytoprotective activity of ozone therapy in SARS-CoV-2/COVID-19. Antioxidants. 2020;9(5):389.
48. Schwartz A, Sánchez GM, Sabah F. Declaración de Madrid sobre la ozonoterapia. 2ª ed.; Madrid; 2015.
49. Rowen RJ. Ozone and oxidation therapies as a solution to the emerging crisis in infectious disease management: a review of current knowledge and experience. Med Gas Res. Oct-Dec 2019;9(4):232-7. DOI: 10.4103/2045-9912.273962.
50. Fernández-Cuadros ME, Albaladejo-Florín MJ, Peña-Lora D, Álava-Rabasa S, Pérez-Moro OS. (2020). Ozone (O3) and SARS-CoV-2: Physiological bases and their therapeutic possibilities according to COVID-19 Evolutionary Stage. SN Compr Clin Med. 2020;1-9. DOI: 10.1007/s42399-020-00328-7.

Tablas y Figuras

Tabla I

Tabla II

Figura 1

Artículos relacionados

Un caso de neuralgia amiotrófica tras vacunación frente a COVID-19

Rev. Soc. Esp. Dolor. 2023; 30(3): 187-190 / DOI: 10.20986/resed.2023.4021/2022

Dolor y rehabilitación en síndrome de Parsonage-Tuner por SARS-CoV-2: a propósito de un caso

Rev. Soc. Esp. Dolor. 2022; 29(2): 119-123 / DOI: 10.20986/resed.2022.3940/2021

Toxina botulínica y ozono intrarticular en la artrosis

Rev. Soc. Esp. Dolor. 2021; 28(13): 73-79 / DOI: 10.20986/resed.2021.3857/2020

Adaptación de la unidad de dolor crónico del Complejo Hospitalario de Vigo al estado de alarma por la pandemia SARS-CoV-2

Rev. Soc. Esp. Dolor. 2020; 27(6): 392-393 / DOI: 10.20986/resed.2020.3827/2020

La pandemia que nos sorprendió y que ha alterado la atención de los pacientes con dolor

Rev. Soc. Esp. Dolor. 2020; 27(3): 148-149 / DOI: 10.20986/resed.2020.3820/2020

Coronavirus COVID-19 y dolor crónico: incertidumbres

Rev. Soc. Esp. Dolor. 2020; 27(2): 72-73 / DOI: 10.20986/resed.2020.3808/2020

El paradigma del ozono en el tratamiento del dolor

Rev. Soc. Esp. Dolor. 2020; 27(2): 69-71 / DOI: 10.20986/resed.2020.3807/2020

Ozonoterapia y síndrome de cirugía fallida de espalda

Rev Soc Esp Dolor 2012; 19(1): 1-2

Ozonoterapia en medicina del dolor. Revisión

Rev Soc Esp Dolor 2013; 20(6): 291-300

Terapias intervencionistas para manejo de dolor en osteoartrosis de rodilla sintomática

Rev Soc Esp Dolor 2017; 24(6): 324-332 / DOI: 10.20986/resed.2016.3508/2016

Instrucciones para citar

Fernández M, Albaladejo M, Alava S, Peña D, Pérez O. Ozono y COVID-19: bases fisiológicas y sus posibilidades terapéuticas según el estadio evolutivo de la infección por SARS-CoV-2 . Rev Soc Esp Dolor 2021; 28(1): 27-36 / DOI: 1020986/resed20213810/2020


Descargar a un gestores de citas

Descargue la cita de este artículo haciendo clic en uno de los siguientes gestores de citas:

Métrica

Este artículo ha sido visitado 41303 veces.
Este artículo ha sido descargado 147 veces.

Estadísticas de Dimensions


Estadísticas de Plum Analytics

Ficha Técnica

Recibido: 07/04/2020

Aceptado: 17/02/2021

Prepublicado: 23/02/2021

Publicado: 17/03/2021

Tiempo de revisión del artículo: 287 días

Tiempo de prepublicación: 322 días

Tiempo de edición del artículo: 344 días


Compartir

Este artículo aun no tiene valoraciones.
Valoración del lector:
Valora este artículo:
© 2024 Revista de la Sociedad Española del Dolor
ISSN: 1134-8046   e-ISSN: 2254-6189

      Indexada en: